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The lectures on which these notes are based were lntended to
_ s-ewe_ a5 an eiementary introduction to quantum optics. They were o '
un, for that reason, with discusaiong of classical experiments and ; . ’ | i '
8 troduction of quantum mechanical ideas was carried ont fairely
. gradually. ‘The most advanced knowledge of quantum eloctradynamics
o whigh they require at'any-polnt 18 soms dequalitance with the eorinec.
. -Honbebwéen the quantization of harmonte oscillators and that of felds,
- Thig:is materizl which is. covered in the {irst two of Professor Kroll's
_ 1e iures or inlhe smtiai ichalers 0! a number of elemerstary texts on
fi&!d theary, :
' .These noles are derived Irom a set which was prepareé from tape
e*ordings and edited by 8. Pratest, L. Nardueel, D. Forster, U.

. Tiulaer, and P Keliey; The author 18 mostgrateful f : : : : R.J. Glasber: =
. help ] . | £ u arthetrgenerous _ . ... Harvard University

e s e

Lemm Lo " INTRODUCTION
) “The lleid et optics, after seeming to have reached a gort of maturity, is bf:gim
F‘ p . S _ ning to um:terge gome rapid and revolutionary changes. . These changes are connect-
T‘&"ﬂ"\ f\é?(',e ' ' L ed with things which we have, s a matter of pringiple, known about for many years,
: o ‘but. the extent to which we could put cur knowledge' into practice has, until just-a

i ‘few years ago, been éxtremely. Hmited. Thus the eleciromagnetic characier of - .
.iight waves hag been familiar knuwledga gince the last wentury, A vast body of

_ Qe O A '
Aheory and technique. concerning the generation of eleclramagnetic waves has been
!“”W‘ P+k"'~5 &Lﬂ E 4’- (;Fn) Jj M?Wf) /} ~ -built up during these years, but virtually all of it has dealt with radio Irequency

fields, . Light.waves. of course, are of the same electiomagneiic character as radio

-

waves. .. But because the only ways we had of gefierating them in the pasi were ex-~.
C L H 8 A C? é 4_ ) ‘tremely clumay (in a sense we shall presently discuss al some length) there has -
Q5 UC/ ES . “been very Hittie oceasion: until recently to apply the insights of radio~frequency = -
: - theary.: In.optics. . A simple physical reason, ‘as we shall see, Hes at the bottom of:

R . ' Ahis:. allof the traditional types of optical solirces pasgess 4 ceftain chaotic quality

( Tk F of B : L,/ﬂ\ N o _ R cemman. They. are what a radio. engim:er wonld reler to'as noise gengrators,

A % § - g - and z1-of the delicate and ingenicis techriques of optics are exercises in the con-

~i 'GT o Cl/f\ feae/ I 67 65 ) structive use of noise, The invention of the optical maser has removed this barrier
G with almost g single stroke. It allows ug to presume that we will some:day ‘be able
B ; : _ ' 'to’ coritrel fields oscillating at optical or higher frequencies with the same sart of
- e Oﬂ I C w H’ . preclsi-:m and versatmty that have beegme familiar in radic Irequency technology.
A@ . : : -Another recent change is the deveinpment af detectors which: respond strongly
1 _'tn lmmridnai qnanta of ngm‘ ‘I‘hese have permitted us o expmm the eurpascuiar

: A .giﬁ”té'(inf.._ .
C‘ c | o
C? f(m O o co

e
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. photons are ex__trem&ly small, much smaller than the ithermal fl&.ctn&tior: energy £ 7T
{T. = noise temperature ~ room temperature for most amplifiers).  There hag
consequently not been much need in radio frequency technology bo date to pay atten-

o Hon 19 the corpuscular structure of the field. The recent Invantion, however, .of

;i low nolseamplifiers, ‘such as the microwave maser; hus lowered the noise. temper-

ahure of the detecting device to such a degree that with further pragres ' ;

: the de g i ;s 1 wit her progress i seema

- not i pqﬁ._s_mk_g that individual photons may be detected, 80, even in the microwavs
- iidreglon, there 1s now a certaln amount of attention being paid to the corpuscular

- Structure of Hght. - R S ek el s iathcs it v

0 is Interegting, dn any cage, to inveatigate the corpuscular nature of electro.

- magnetls flelds, because it will set the ultimate limitation to the possibility of trang-

- mitting information by means of fields: . We will nat discuss information theary in:
these lectures, but wé will have some things to say which are relaled to nolse

- theory. Noise theory is the elassical form of the theory of fluctuations of the elec-

iromagnetic lleld and is quite naturaily related to the theory of guantum fuctuations
ol the fleld. All of these subjects fall under a general heading which we might call
phaton statistles. . Coherénce theory too, fa properly speaking, a rather amall area
of tl_me same general subject. Its purpose ls simply to formulate some ugeful wiya
of classifying the stati.tical behayiovr of fields. , T '

The problem ta which we shall address ourselves in these eclures is the con
atruation of a fairly rigorous and general treatment of the problems of photon sta-
listics. There Is no reed, in doing i, to make any material distinction between

- radio frequency and optical Jelds {¢r between these and X-ray flelds for that mat~

P ter). A part of the formulism, ‘that which has to do with the definition of coherence
is _guggested 1:;__!:}_& as 2 way of unifying the rather different concepts of coherence, ’
‘which have characterized these areag in the past, . : '

¢, 'We have already remarked thal optical experiments have only rarely dealt with

: indi-_yiqualj. photang. - Much the same ‘obgervation can b made for optmziiitheai'y' as

. well. " If the photon has to such a remarkable degree remained a stranger fo optical

. Aheory gome justification for that fact gurely les in the great success of the simple.

i wave models by the analysis of optical experiments. Such models are -ﬁsuaﬂy spoken

- of as being classical In characler since they proceed typleally from some kind of
analogy to clasgical electromagnetic theory and pay as Little astention to the corpus-

. cular character of the radiation as the experimental arrangement will permit.

In these approaches one talks. typically about some kind of “optical disturbance
function” which is agsumed to obey the wave equation and perhaps certain boundary
canditi_an_s as well. The function may represent the components of the electric vec-
tor or possibly other {leld quantities guch as the vector potential, or the magnetic .
» feld, “In many applications in fact one does not need to be very speciﬁé ahout what

. :

it really does or does not represent,

- -

Pr_—

O -~
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 Letus consider the Young interferometer {Fig. 1} in order to .i_'ihistrate the
elementary approaches we ave discussing. . A plane, quasi-moncehromatic wave
coming: from a point source o lmplnges on the screen T with two pagallel shits at
the posttions Poand Peo-o ol a0 s o0 e :
~i The two waves emerging. from the siits give rise to an .in!erfgre}-gc.g patlern on
the screeén T'; which-wé can oiten seé.with thé-uhalded eye. - The simpiest way of
predicting the form of the interference pattern is to ignore the vector character of
the electromagnetie field and introduce a scalar field ¢ which is presimed:to des-
cribe:the "eptical disturtance.”  We then try to find a function ¢ which satisfies
the wave equation together with a set of boundary conditions which we take to re-
present the effect of the screen . That problem, as ybu remsinber, is in general
a good.deal too diffieult to be solved exactly; and it fs customaryto mgke & number
ol simplifying approximations such ng dealing very crudely with the boundary condi-
tions, and making use of the Huyghens principle, By these familiar-methods we
reach a simple evaluation of the field distributlon ¢ on the screen Z°°, " * .

.- Of courae, 3 'we are to predict the form of the {nferference pattern, we must
at:somae plage face the question of attaching a physical interpretation to the fieldy,
The most familiar approach isto regard ¢{v, ) as a real lield and 'tq fdentify it,
perhaps, with one of the components of the electric field vector, : The experimental
fririge pattern 1s then predicted quite accurately, as'we all know, if the light inten-
sity on the screen is identified with.¢*, the square of our optical field. iTlie ident~
{tication posseases the juatification, from the standpoint of classical theory, that
the Poynting vector, -which telis ua the energy fux, is indeed quadriatic in the Lield

.8tfength.: In splte of this evident support the identification is not a ynique one,
“however; it pays too little attention to the way in which the Huht is dbtected. .

- Let ug guppose that the lpht intensity ia measured by using a3 phiton counter at

-the position of the screen. ‘We then ask how we wmay predict the resgonsg, of the

counter.as it is used:to probe the pattern.” Although the use of ih¢ wave-equation to
find the:field amplitede ¢ did not introduce any distinctions betweerthe clagsical and
the quantum theoretical approdches to the diffraction probleém, the-ust of a photon
cotnter-ag a detector does Introduce a distinction. ~The photon cougter is an intrin-

- sically quantum mechanical instrument. Its gutput is only predictable.in terms of
"-statistical averages even whenthe state of the fleld ls specified prégisely. H we

are:to predict this average responge we must be rather more specific than we have
thus lar been about the field which the counter gees ‘and we must treal the detection
meachanism in a fully quantam mechanieal way. What we {ind when wg do thege
things 1s that the counter'may be more gecurately thought of as regponding te a-
‘complex field ¢ * rather than the real field 9, and as having an output proporiional,

“nét to-@*) but to [ * |7, (The distinetion is not a‘trivial one physically, ginceina

monochromatic fiéld ¢* oscillates rapidly in magnitude while [9:'" |* remding
constant.) - Once this angwer g known it can he used as a.crude rulg for bypassing
the explicit discussion of the'detection mechanigm Ih applications {0 other ‘detection
problems. S B
~the use of such rules as a means of avoiding the explicit use of quantum mech-

anles has geveral times been called the “semi-clasgical approach’™ .. While approa-
chies of ihis type clearly need i@ rule of some sort to bridge the gap between their.
degeriptions of the wave and particle behaviors of photons they may remaln perfect~
ly correct approaches in'a quantum mechanical senseas long ad the rule has been
chosen-correctly.” The fack that-a mistaken form of this rule has beei. used repeat-
edly in "semi-clagsical” discussions'is a good indication that the fully quaitum -
mechanical discussion is not. entirely begide the point; S BT

“ One of the propertiel of [he "semi~tlassidal” appronches that makes them .
elémentary is thal they deal 'with ordinary numbers and functions. They make no
-uge of the apparatus of non-commuting operators which, it may appeur,” ought to:
be part. of any formal quantuntmechanical deseription of the field, Later in these
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Hectures we shali show that for a certain class of Helds there need be no errar in
-3 statistioal description of the field which 15 based upon &uch ordinary functions as

omed ind-by golving the wave equation. It is possibleto describe these fields fully

oy means which are rather similar to those used in the clasgical theory of noise.
‘Where such & description is dvailable it meana thaf there need be nothing inevrrect
About the so-called" elassical” or " semi-classical” approaches except their

© names, which then'become tolally misleading. It has recently been claimed that
the class of states of the field for which the simple:statistical description we have
mentioned Is available Includes all states of the field, and that consequently the
quantum theary and the " classical’ theory will alwayy yield equivalent resulis. We
shall have to return to this point later in the lecturss when we are better equipped
to discuss it, but for the present we may remark that this claim seems to be baged
more upon wishful thinking than upen aceurate mathematics, The quantum theory
still offers the only complete and logically conaistent basis for discusging field
phenbmena. - R ' '
. The general subject we ghall be discussing, to-give It its most imposing name,
dg:quintum electrodynamics, K s an extremely well developed subject. Although
- has long been clear that clagsical elecirodynamics 1s the limit of quantum electro-
dynamles for h~+0, there have never been any very powerful methods available for
discussing electrodynamical probler s near the classical lHmit,
-, Al of quintum electrodynamics has historically been developed in terms of
the stationary states | n > o the field hamiltoniang « ‘These corfespond to the
presence of an integer number n of quanta, 1, e, they obey the equation |

CEia> = (ned) Kwa> . o St

The n-guantum states form 2 complete set which hag usually been regarded ag the
" natural" basis for the development of all states of the field. - To the extent that -
virtually all electrodynamical caleulations have been done by means of expansions
-in powers of the field strengths, the-mimbers of photons which have been dealt -
With in the caleulations have usually been very.small integers. . The.classical Hmit
of quastum electrodynamics, on the other hand, is one.in which the quantum num-
bers are fypically quite large.  Not only are they large but they are typically quite
uncertain. If, for example, a harmonic osclllator lg vibrating in 4 state with a.
relativély well defined phase, It ia necessary that. it not only be in'a state with a

kerge quantui number, bat that the Yuantum numberof the state alsobe quileuncertain,

(An s> 1),  When we must deal with quantum states of the slectromagnetic field for
which the phase.of the fefd is well defined, they can'likewiae only be states In which
the: octupation nugiber o'ls intrinsically rather {ndefinite. In such rades the descrip-
Han of expectation values in lerma of the n- quantum: stales becomes rvather awkward
and untransparent, ; ' ‘ '

o : T I . . s . :

- One of the mathematical tools we shall use in these lectures is a set of quantum
states rather better suited to the deaeription of amplitude and phase variables than
the n-quantuin states. The uge of these states makes the relationship of the class-
fecal and quantum mechanical forms of electrodynamics congiderably clearer than it
has been before, s oA

' L - CLASSICAL THEORY :

M uay. help to underscore the close connection tistween the quantum theory we
V-develop and the clasgical theary il we begin by discussing the classi

¢. We shall describie the.classical field tn terms of the fan

 ta dhey the source-Irae Maxwéll equations
Clwima, U gwga.d

v B,

At e —

. plex conjugates of ene anather R

* an orfhionormal set

P—— S, i [E—— f—
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. by agsuming .tﬁat whatever source hag radiated the flelds has ceagaqvlm padiaie

Hher‘ B - - . B d R ERR AN
. g .’Smca eur-detectors are usually'senaitive tp electric ralther than magnetic

- fields, we shall confine qurselves loa dispussinn of the Held E{r, 1} «Ope of the

firgt things which I8 done in many classieal caleulations is to use o Fourler serles

‘og-integral to expand the time dependence of the field and {n that _wa}y; _tu geparate
* the field into two complex terms; g : : .

E(ng-=EY (py « B (n) ANV S
w 1Y this ; o e
' 1 i ' itive frequency part. B,
first of thege terms, which we shall eall the positive [ ey P
':El:ta:;: all the mrttplitmi’es which-vary ag-e™t. for-w » 0. The othek, {he negative
frequency part, contains all amplitudeg which vary as g™, Thegg térms are con-

B SR

Tty

" and contain eﬁuivﬁiént physical information.. Either one or the ofhigr. Iy frequently

used in classical calculations and called siiher the compiex field stfength or the

gnal lagsical contbxds tg usually
. complex signal, -The use of these complex fields in clasgic: ontéxis by us

. rzga':-ééd' as a mathematical convenience rather than a physical necesgify. b?z}pﬁj
. cizssicél-measuring devices tend to respond only.to the realfield, E = 2 Re'E(D,

. ‘mechanical detectors, as we bave noted, behave rather differently
‘ffémqm?ifﬁxﬁnes; and for the discussion of these the separationof E;Lue 3 t~el(:imuj:s
positive and negative frequency parts takes on a much deeper signifi _a_;;c.et 3 ;_a?.m
does for classical detectors. .As we shall later see, an ideal ‘phom{\ {:ﬂurk ?he’ omd‘
which has zero aize and is equally gensitive to all frequencies) measurgs the p

et BV (e ) BV (r, 1) = HESY (5, )17, That, at least, is what'the detector

; ; i J: fixed field
& if we were capable of preparing fields thh‘preusgl_y
:t?rf:gfg::u‘g:t of course we are pever capable of controlling the motions of the

- chargés In our sources with very great precision. In practice sl fjelds are radi-

' ' : ) jderable statistieal uncertainty.
by sources whose behavior is subject to cons ; ! :
;‘t:ed tizlds are _theg correspondingly unce_l;tain and what we reqai;g 35 f" way of de~
r this upcertainty in mathematical terms, N
sg:ri?;mg more convenlent, in degcribing the randomness of the fields, tp deal with a

discrete set of variaples than to deal with the whole contimium al, ?!Te: Wi shall

e he fal : ' : f space
y attempt o describe the fleld lylng lhgide 2 certain'volume of ¢
wm;;;?;;i?!:lgz:iiﬁiﬁmd it:in: terms of a discrete set of orthogonal mode func-

© . tiona. . We ghall take:-the set of vector @ngg functions {u! {rH} -t.qlgbe’y the wave

equationg R BEEETIRS
h S
v %} Wi =0, PR a9

which define a set of frequencieq {wd when they are satisfied tog efhe% with {he
P : L u'i .(r} = ﬂ Ll n - . N E].,ﬁ)

ﬂ.}‘!da &ﬁi&bﬁé' sét of Boundary éoﬁditidnﬁ. - Fhege functions may be assumeg'teform

*
+ o

I IONCRE L R L

RN N

.

mpiete within the v@im@.miﬁg’émamd; _They may then be used to ex-
ess tha electric field vector i the form L . _
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Elr, ) = Z,C uin)e™ 4+ 5,004} (e, (1.8)

The two sums on the right ars then evidently E' and B, respectively.
L. When the expansion in orthogonal modes {8 used the field ig evidently specified
completely by the set of complex Fourier amplitudes {C;}. T describe randotn.
i flelds we must regard these numbers as random variables in general. Usually the
most, we can stale about these coefficlents can be expressed through a probability
disteibution p({Cy 1) = p(Cy, C1,Cs, . L), Then, if we meagure some fmection
ol E or of B | the most we can hops to predict s its mean value, i.e.; if we
measure F{EM'} we can only hope to find the average

<FEMS 2 fpic D HEY (leahin, @ ¢, | (1.9)

‘where the differentlal element of area g glven hy..d*C; = d{ReCy} d (ImC, },

‘It i important {o remember that this averags s an engemble average. To
measure it we must In principle repeat.the experimeant many times by using the
same procedure for preparing the Hald over and over again. That may not be 3
very cofivenient procedure to earry out experimentally but it is the only one which -
represents the precise meaning of our taleulation.  The fields we are discusaing
may vary with time in arbitrary ways, As an example we might take the field pen-
erated by 2 radio transmitter sending soma arbitrarily choren message.  Thereis thera-
fore no-possibility jn general of replacing the ensemble averages by iime averages,
The theory of non-stationary statistical phenomena can only be developed in terms
of ensemble averages, o L

. " Thesolution of problems In statistical thermodynamica has accustemed us to

- thinking of statistical fluctuations about the ensemble average as being. very small.
We are thus usually wiiling to forget :hout the need in principle to.nmake an ensem-~
ble of thermodynamic  sasurements and are content to compare ust a single -
meag wrement with the predicted ensemble average. - While the ju:tification of such
shortcuts may be excellent i thermodynamic contexts, it is nof always so good in
Blatistical optics. Thus when we speak later of the interference patverng produced
by superposiug light from independen’ gources we shall find that individual meas-
urements yleld results wh -ly unlike cheir ensemble: averages,  The distinction be-
tween particular measurements and their averages may thus be quite essential,

#

Lecture I, INTERFERENCE EXPERIMENTS

One of the classic experiments which exhibite the coherence properties of light
is the Young experiment ( Fig. 2}, .

s
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The field present al P al tima £ may be approximated by a r:ei"é:zi‘n‘ii’a;;s;j'r: is’u;;cr;m:aj-
tion of the fields pressnt at the two pinholes at earliep timos: T

EVn, 0 5 a0 BOYn, ) 20 B9 (1, 1) T

_where th_é times are givenby t,,2 = t - S,,;/ﬁ. The coeflintunts x;, 1; c‘ttg'pend' ur
- the geometry of the arrangement, but are taken to be independoent of LBk properties

of the field, Loy

. We ghall agsume, to begin'the discussion, that & photodctector placid at P
measures the squared absolute yalue of some component of the cemplg’x fieid ‘
strength, (At a later point we shall discuss the validity of the assumption in some
detail, } -If we write the measured field component as EYYNr, 1), we'then have

i EM{?;'Q"’ = IEH(P, {) Eh]{ S fag)? EM(P&JL) EMU‘:JI); .' ..
' Il B, W) BV, 1) 0L ()
+2 Re{hy 4 B (1, 10 E'Hr, ) F
Naw slnce our preparation of the source parely fixes the Fourier coe};‘ihiems (%
very precisely we must in principle perform the experiment repentediy amf then
average in order to find a non-random resull. The only thing e Can veally pre-

dict i the ensemble average of |E((r, 1}1* taken over the set of ramdom coelli-
cients {C,}, - : ‘

<TE, 01> = il < B ry, 601 5 101 < 1EY (ry, ) 135,

: A Ren M <EC(R, ) B m, 1) . F (23

If we introduce the first order correlation functjon o T
G, pe) = < BO BV i) | RS
we can rewrite £q, (2.3) i the-following way S _
B 1> = i 60 b, mit) 4 al® 60(nt, )L
S el h 6L 1), S (RS
We have omitted consideration of vector and tensor indices of the Helds and cor-

relation functions, respectively, since the vector properties of Uze fielf nro nol
too important in this experiment. ‘We would have 1o take capeful acedunt of them

LI [

P

ar

. if semehow:a rotailon of the plane of polarigation wera tnduced belind one pin-

hole, -or if the polarisation were i any way madg to play 2 more uctive raje,

- A particular case which occurs almast universally in classic optics is that in
which the incident field is stationary. The term Hatationary't does ngt pean that
nothing is happening. . On the contrary, the field is ordinarily oscillating quite
rapidly. Tt means that our knowlepigg-abogt the [teld does pot change with time,
More formally, we zssociate stationarity with myariance of the statistjeal de-
seription of the beam under displacements of the time variabla, The tyryelation
function GY for sych fislds cantherefore only depend on the differandg t - tt

{ Note thaj bjr discugsing only a gingle type of correlation Iun_f:fimz we afe siming
a necéssary condition for stationarity, but not & sufficlent one. All ayeruge
properties of:a stationary fjeld must he unchanged by fime displacements, ] Wien

‘random classical Helds:are represented by ‘meang of stationary stochastic pro-

cesses the models used usually have the ergodio property. - That property ‘means
that the function Gt - ) which is defined as.an énsemble average, has'the

same value a8 the time averaged correlation fuaction It - [ U

3
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H {e)
{}tn(k‘“ }':‘,T} . Ff 1(1“ Fa, 1} = Hm T f? Ei {1‘;, t;*ir’f) E [rﬂ.n tl}di; ?3

The properties of the time-averaged carrelation f;mctianﬁ T ap ﬂla.?smai fields

have baen discussad indetail in Chapter 3 of the text of Bopa and ?’oiam cancreta
H may be of some help in the lectures that lollow to have san; n} o sancret

applications of interference experiments in mind, Let us take & ::;e - wrgﬁh e

of the fundamental techniques of Inferferametyry by gopaidering a ¢ o Fleh U

field incident upon a detector i a supepposition of fwo plane wavesh N St

that this propagation veclors of the fwo plane waves are only very 8 1% htyfmm B

This might be the cage for example for mopochromatically t;ite;red IE i

' “pwd memberg of a double gtar, H we assume that the frequencies of bo

- are equal we may wille

Em(r 1) = A gtk r-«ﬂ) + B pillerpeet) {2,, 8)

'f‘:ha questlop we now ask is: what kind of measurement can be pe;'tturr:;d tg deter=

mibe that we are receiying radiation from two sources and not just Gncter ¢ the
Before answering the question let us specify the statistical ghzra gfﬁcients

coefficienis A and B, They are, of course, particular examples o gh; z: ety

Ci praviausly introduced. We will assume A and B fo be distr:butacmrizgs

of one anocther. ‘This meaps that the propabllity function p{A B} fa 5

A, B) = pi(A) p(B), {3.9)

s f the distributions p, and p:, that the
@ wil] assume fyrther more as properties o
gmses of the complex amplitudes A and B are individually random. We then ha\;}‘
<A> % B> = 0, -More gansrally the mean values of vanm;s powers of the a:ﬁxp
tudes and their somplex conjugates such as <A B*>, <{A|" A¥ B>, kem.c ::1 rugates
vanish, - Averages in which the amplitudes are. pa.irad with theip complex g

however, fake on positive valuas, .

<IAT> #9, <;B'. >=0, n=1,8.., . . (210
A [amous device iuvculed to answer {he question we have asked is the Michelson
‘stellar :ntepforomuter { Fig, 3},

—~

. clearly required of the appa atug

ea - P - 4 - B e

oot st R ittt ol ieeteaggnieeitind
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The field at the point P and time t i3, in-effect, the sum of the twa Izeids impinging
on the mirrors M;, My 81 the sanve instant o Elf the optieg! paths. M;Pand M,P
are equal}. Each of thead two fields s of the form (2.8) evaluasted at the points r,
and r; respectively, . The av&mge intensity at P will therefore be |

CENEHEM 8 > = 2Rel<JAP4B*> .

Lo {21
+ JAP D e W men) <$B|2>e“"‘“in-r.) } (2.1
where we have uged <AB* > = CA> CHE*> = g in reaching this expressmn
Hwe introduce the correlation function (2.4) , .o
G“(r;t‘ rgz'} -<E“’(r,t’}E‘*’(rzt'}>

: S (22)
o < '_A! > pkinen o le >£~m‘ [r, r;)

then intensity may be written as

<ECHD 9B, B> = 2Rel< jA) + 1Bi*>

{1 " : {2'13)
+ G (it rgt')[

The correlation functitn which deseribes the lnierference effect is tlme inda,penduxt
because of the stationary character of the feld we are treating, '

‘We see from Eq. {2.12) that the correlation function contains two spa{,:any
oscillating terms, The'way in which these terms, rainiorce or cancél one another
will depend on the displacement ry - rs. It <jAPF > = <;B; > Eq, (4} 13 vields

ie Y
. "

<E(x, t)E"’(r.t}> 4 <iAp >n+cns{;(k+k-) {r; -r ,);x e

w00 [4(k-k)- (2 7r) )

The interference intensitywhichwe see at the point rwiltbepartofa pattem oI paral-~
lel-fringes which we see at the focus of. the telescope. Although we have not ai-
tempted to degcribe thefrlngepatternméemﬂ the expreasion {2. 14) for the iptensity
doeg Indicaie one of the characteristic properties of the pattern, that it wjli va:;l.sh al-
together when the dlaplacement ¢y - 1, Is adjusied so that

c‘mf‘i(k Yk (rerad ] SR R

{2.14)

pagses thrnugh the vaiue zero,: By abserving the tringes we know ﬁmi we'are deal-
ing with two acurces rather than one, and by finding the values of ¢, Fy at which
the fringes: dssappaar we determing their angular- geparation. The Miphelson inter-
ferometer hag indeed been ysed to measure the angular separations of Aouble stars,
and for mmurlng angulardiameters of stars as'well. Only a few stellar diameters
have been measired in thig way, howavet, becauge of the difficulties. Inherent in
working with: a:t_arge ﬂ:ﬁarfemmeier. -An unusually great mechanicai ‘stability is
x:thermure random varmtions oi th& Endex. of
refraction a ngthe optical path.can was) ; .

Instrdments quite similar 14 th Mmheiacn stauar m!errammeter !mra been

: ﬁw aﬁte_: ' i without. mtmdu _ ng’ randm:z phase difi.erem.ea
in the? path beﬁween the antannas and

& detector, To overcome this difficulty Han-

: bury Bréwn and T\viss have! devlﬁedfaxmther form’ of radio f.nterfemmater { Fig.4},

r
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The signals at the antennas are detscied individually and then the detector autputs,
which are of much lower frequeney, are transmitted to & central correlating device
where they are multiplied together and the product is averaped, The angular gize
of the source is otaied from measuremeants of the way in which the correfation of
the Intensily fluctuations of the signals varies with the separation of the antennas,
Ati egulvalent arrangement may be used with visible light,

L. ¥
ok P>
Py Pa Pi,z ®  photo tubes
T B detay ~ line
(ti r2|

c = mutliplier

M = Eﬁiegro!o:

Figure 4

The essence of the trick used by Hanbury Brown, and Twiss was to detect the
siguals first and. by taking away the high frequency components of the incoming ra-
diation, to transmit (o the central obsetyation point ,ust a measure of the fluetua -
tions of the intensities arriving at the receivers, Since the delector signals are of
relatively low frequescy they are #asy to transmit {aithfully over distances iargg
compared to the Hmiling dimensions of Michelson interferometers, This experi-
ment is quite different in nature from the interferometer experiment we described
earlier because if deals with the average of the product of two.randum intensities
rather than with a single intensily,

H is easy to see thal in the avérage of the product of the two signals the.re is an
Interference term, when permits us to resolve the two incominy waves. First we
note hat a square-luw delector placed at P, gives z response proportional to.

EM 00 < 1817 4 B2 + ABre Ry
t AME iRl o (2,16)

This output no tonger containg the rapid osciliations of the incoming wave, An aver-
age ol this delected signal, however, would have no interference term {since

<AB* = 0}, what Hanbury Brown, and Twiss did is mulliply together the two
detected signals and then, and only thea, 1o measure the statistical average, The
average of the product of two intensities of the form of Eq, (2,16} ia

SETROIT IR0 >+ <A B> (217
T 4 2<JAITIBI®> cos [(k - k') + (r, - 1) ],
where we have usod the faet that '< AP AYB > » 0, élc. . The fosine term clearly

FEpresunls an inderferonce effect, We can use it fo resolve the two sources by ob-
serving its buhavior ay Fy - Iy s varied, It is bmportant to note {hat the inlerier-

e e

o
-
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ence affpet haé,_b’eeé found by constdering the average of a'quantity qiiartic in the

©field amplitudes, In the case of Michelson' g intertemme;e'r we deal ;Qniir with

generil, perfectly monochromatie,’ It follows then that the coelficieits A and B,

© - which we were content earlier to-evaluate only at a particular Instant ot time,
- attually vary with fime,  To proceed further we should have to adopt models to

represent A(t) and B(t) as Slochastic functions of time, Ag we shall see presently,

* - there'are extremely persuasive. reasons, when we are dealing wijh natura) light
Sources,” to take these models to be Gaussian stochastic processas, - Thep, since

such processes have the ergodic property, we are justified in identifying time
averages with ensemble averages, : R

+
-
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INTRODUCTION OF QUANTUM THEORY - .

PN

. PR
. 'When we deseribe the electromagnetic tisld in quantum mechankeal terms we -

Lecture I

-mast think of the field veciors B and B as operators which satisly thé Maxwell

equations, The states, |>, on which these operatars act and their adfgints, <|, con-

tain the M&rm'atim-wlﬂch_s’pecifias the field, When measurementa are made of the

physical quantity which correspond {0 an operator &, we tan nol expect in peneral 1o
find the same results repeatedly, Whal we find instead is that the measured values
Auctuate about the average value given by the product <{Ot >, The fuctuation is
only absent if the slate, | >, happens toha an elgenstate of o, |, e,, 4 wg have

.

01> = 01>, . S £ R

where O° ja an ordinary number rather than an operator,  In that case'lt is conven-
lent to uge Dirac's convention and let the eigenvalue ©' be a label {of the state by
writing the latter as 10'>, : R

As in eXassical'electromagnetic theory, it is convenlent to separa»ie the field
aperator, Bir, 1}, which is naturally Hermitian, into the sum of its pysjtive frequen-
¢y and negative {requency parts: e

E(r,) = ECr,0 + EONp,y (1)

These parts, as.we have already noted clzssi'caiiy, represent complex rather than
real fields, ‘The operators Bt are therefore not Hermitian, put they are Hermit-
ian adjoints of one another- o e ' K

CED = Er0)t . S

i

Wilile the fields ' and g1 play essentialty indistinguishable rolds tn classi-

_cal theary, they tend o play quite dissimilar rofes in the quantun thepry,  The

! [
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aperatar % ¢ describes the annihtlation of a photon while E ) destribes the crea-
tion of ona, This lkdentilication of the operators is virtually the only _fa__gct we ghall
hat & to borrow from mare formal develogemeits of quantum field thdory,
. oWemust think fundamentally of atl slectric field measuremenfs as befng made
onith: Hermitian operator E(r, t) given by Eq. (3.2). In the clessical limit it Is
usualy true that the complex fielda £ and Bt make contributions of equal mag-
*‘nilude to.cur measurements, From a quantum mechanieal standgoint that ig be-
| cauge guantum energics are so-small in the classical limit (bt *f(};, that test
charges emit quanta as readily as thoy absorb them. ‘In the quanium damai.n, an
the other hand, we must expect that the fields E* and E7 will make contributions
of altogether different magnitudes {0 the quantities we measure, such as transition
amplitudes, .

1f we are using atomic systems in thelr ground glates as probes of the electrie
field for example, then the aloms have no energy to emit photons and can only a_b-
sorb them. In this case, which corresponds in principle to that of a typical__?hotn-
detector, only the annthilation cperator E{* figures significantly in determining the
transition amplitudes. More exactly, if we do a calcutation of the transition ampli-
tude using lirst order perturbation theory, we easily find that the creation operator
E'7 contributes only an extremely amall amplitude which varies so rapidly with
time that it leads to no ubservable effect at all,. The creation operator can gniy
contributematerlally If the detector containg exeited atoma, {Thermalenerglesare a
greatdealtoo gmalito furnish atoms exclled to optical energles, butatmicrowaves fre-
quencies it may be necessary to take thermally excited atoms into account, )

In the third and higher orders of perturbation theory, the creation eperator can
indeed play a tiny role in an absorption experiment, The effect in question is a
radiative correction to the {lrst order abgsorption probability whick all estimates
indizate will be quite small, We see, therefore, that it Is fairly accurate to say
that a typieal photodetector detects the field Bl rather than the field B, Although
this staiement is clearty an approximate one rather than a rigorous one it iz none
the less important since it lurnishes us a reason for formulating the theory In
terms of a sel of non-Hermitian operators, The formulation;, as we shall see,
allows in turn a great deal of insight Into the way the theory passes’'to the classleal
Hmit. ‘ L

To galn some further insights into the kinds of quantities measured in photon
counting experiments, let us examine tha role played by the field operator in the
caleulation of the appropriste transition probabilitiés, In the next lecture ‘we ghall
indicate how these Lransition probabilities are calculated in some detail by taking
due account of the atomic nature of ti.e detector, Let us for the moment, however,
tgnore the detailed dysamices of the detector and assume simply that it is an ideally
selective device, one which i sensitive to the fleld £ {rt} at & aingle point of
gpace ¥ av gach inslant of tkme t. We may take the transition probability of the
deteclor for absorbing 3 photon from the Held at position r and time t to be pro-
portional to

W= 10 EM Ry 1>, {3.4)
where |12 is the initial state of the field before the detection process, and {£>15 a
firial state in which the lield could be found after the process, In fact we never
easdreithe finat siate of the lield.  ‘The only thing we do measure is the total
ing rate.. To calculate the total rate we have to'sum Eq. {4, 4) over-all the
states of the ficld that can be Teached from |i » by an absorplion process,
hawever, extend the sum over'a complite set of final states since the
ates which cannot be reached {e. g., ‘stites H> which differ from |i> by two
photons) simply will ot contribute to the result since they are orthogonal
swte B4 (et iS00 s oA :
When the final state summation IS carried ouf the counting riate becomes, in

y

terfarence expe riments,

)
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W o= £3.5)

ZISELEE, ) 1> 1 = UEO(r, 0 B ) (r,0 [},
Where the completenessirelation T H> <f: = 1 has heen vdid, The'cbunting rate w
is proportional to the probability per unit time that an ideal photecountér, plaved
at r, absorbs a photon from the feld at time t, It i5, according (6 Bq. (3, 5), glven
by the expectation value of the positive definite Hermitian operator EVin,t) 200 (r 1),
taken in the state 1> which the field was in prior to the measurement.’. Eq. {3.5)
shows explicitly. that the photocounter is not sensitive Lo the square tf the real {ield
{as has been assumed in muny "semi-classical”. calculations}, put rather Lo an
operator which corresponds to.the aquared absoklite magnitude the' cdmplex field-
strength, : - . : Lo

We have thus far supposed that we know the state |t > of the field, .That does
not mean, of course, that we can predict the result of a single measurement made
with our.counter, If we repeat the measurement another result will guife likely lurn
out, - and. Eq, {3.5) gives us only the mean'value of many repeated measurements,
So quantum mechanics forces us to talk about ensemble averages_eyc{n.i_f we know
the state of the fleld precisely. .. S e v

In practice, of course, we almost never know the siate 11> very.precisely,
Radlation sources are usually complicated systems with many degrees of freedom,
so the states |1 > depend, asz rule, on many unconirotlable parameters, Since
we have no possibility of knowing the exact state of a field, we mysl resort tu a
statistical deseription, This description summarizes our knowledge-of lae {icld,
by averaging over the unknown parameters, The predictions that we make by using
this description must therefore, in principle,be compared experimentally with en-
semble averages, With this understanding we may write the counting rate as zn
ensemble average of Eq. (3,5) over all random vartables tavolved. in the state] 1>,

w = {<HEC(r, HEY ¢, 03115}

av. over |

(3.8

If we introduce the density operatorp = {]1> < 1}, over1 » WEMay wrile this ay-
erage as - . L . :
‘ w= Tr {pECYr, ) EY(r, 0} | AN (3.7
where Tr atands for the Lrace of the operator which {ollows,
is the average of the projection operators on the initial fleld states; It is obvieusly
Hermitian, pt= p, Furtheérmore, It also has the property of pogitive definiteness,
<ilgii> = 0 for any.state 1} >, It i3 worih emphasizing that a two-fold averaging
process ia implied by Eq, (3.7}, That we must average the measyfements made
upon a pure state {8 an intrinsic requirement of quantum mechanics which has no
ciassical analogue, The ensemble average over inittal states, on the“other hand,is
analogous to.the averaging over the set of random coefficients {C,} which we des-
cribed In the classical theory, = = . - I

. Equation (3.7) gives the counting rate of a single
of the quanitum mechanical correlation funetloh :

The denstly operator

ideal photodétector in terms

6" x,x) = Tr {pEM ) E*x)}, @

x& {rt) '
' fur  Introduced to describe glaséical inw
[ : 8. - To.deseribe more sophisticated experiments, e.g., the
celncldence experiment of Hanbury, Brown and Twiss, it s useful to deflne a more
gen_;ex_:a'l_::sgt.of'corr‘elgt;ezi'-[kmct_io_na 2 S e ce N

which Is analogous to the correlation function

G (xyvee Ky Xpuyeos Xp,) = TE{PED(x,) . BV EMx, )
-a-EM(x,;J};‘ c (3.3

.
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The function G will be referved to as the n-th order eorrelation {unetion. The
auaiytical properties of this mel of fuietions and thair relation to experimental
measurements will be discussed later. _

We could, of caurse, have chosen to define & snmewhat larger class of cor-
relation fuactions than the G{™ by deal ng with averages such as Tr{pR¢IEMEW

Ef}, which contain unequal numbers of creation and annihitation operators. 1f we
hiave chosen not to set down any speeial notation for such averages it is because

Ahey are net of the types which are measured in typical photen counting experiments.

‘Such averagesmay, inprinciple, be measured in dther kinds of experiments but they
#ill always vanish In statlonary states of the field and, much more generally when-
sver the absolute phases of the fields are random, Random absolute phases are,

s course, rather characteristie of optical and other extremely high frequency
ields,

Jectyre IV THE ONE-ATOM PHOTON DETECTOR

Let us now consider the photodetection process in somewhat more detail. We
shall imagine, for the present, that our photon counter is a rather idealized type
i device which has as its sensitive element a alngle atom which ig free to undergo
hotoabsorption transitions sueh as the photoelectric effect. We assume that the
tom is shielded from the radiation field we are investigating by a shutter of some
art which opens at time t, andcloses againaitimet, Our problem will be 1o cal-
ulate the probability that a photoabsorption process takes place during this inter-
al and that it is recorded by our apparatus, Ny

‘The detector witl be assumed to'be far enough from the radiation source so

aal the fleld behaves as a free field, The iamiltonian of the aystem { field + detec-
ar)  can thea be writlen as ' '

o= ?{D+?f' H 5!"a“g"o,ml *’gfu.r N

‘here J, 1s the sum of Hamittontans of the free field and the atom. The interaction
:rm ¥ s time Independent in the Schridinger pleture, In the Interaction rep-
esentation, however, il becomes Hime dependent, If we make use of the electiric
ipole appraximation, which je quite accurate at optical frequencies, we can write
12 {ime dependent interaction Hamiltonian a8

~

Ly
g{l — &, e ¥t = -eg;qygt) < E (). . (4.1

1 this expression r represents the position of the atomic nuclens and 4, the posi-
Gn operator of the 7-th électron relative to the nucleus, The time dependence of
e [teld B{r, {} which occurs in Eq. (4.1} is thit of the free field uninfluenced by
18 presence of the atom, :

The Schrddinger equation of the tombined system of fleld and a*om in the inter-
tion 1 epresentation iy o

a
iﬁ‘:ﬁ* it > = gdnit >, {4,2)
's"goiutle_n can be written in the genersi form

> = U t) 11>
ere U(t__,::. o) 15 the unitary time development c:parélar. which desdrib_es the way in
iich the dndtial state changes wider the influence of the perturbation, " In the first
«dor of perturbation theory the solution has theé well-known form ’

s !
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1= {1k {: g(t)dr} i Lo (4. 3)

*

Let us suppose now thal the system ia initially in the state gi> =.|g 311>, where
11> Is some known state of the field, and fg > 18 the ground state of the atom,
We ask now for the probability that the aystem at thmeo 1 is In a spegiiied state
lat> = 14> |£>, where [a > is an excited state of the atom and {1 >"1a the final

_8tate of the fleld, This probability s given by the aquared absoluts value of the
_matrix element : : e,

<aflu(, ta) (gl > = & (‘ <aflg(t) fgi> du-, L (44

K L}
A

{The zeroth order term In Ut t)of Eq. (4,3} dees not contribute\;eéiuse of the
orthogonality of the electron states {a> and 18>} By substituting the interaction
-operator from Eq, (4.1) we can separate the matrix element into two parts, a

i Cepr

matrix element for the atom and one for the fleld: e

<afiv( ) (gt> = 2 3 I <aiqe)iess <ume e ws
. ] . AL
To evaluate the atomie matrix element we recall that EENCER
_ L N ) Aw e A
a,(t) = o8 g (0) & KM o o FHumt a (o) e B0’ oo

LRI
"

The latter retation holds because the fleld hamiltonian Har commules with the

atomic Hamillonian ¥, 21 and with the electron coordinate qlo} as well.  We may
write the matrix slement ag T

»

<AIZ,q,(t)1g> = M, ewur S

a
H
[

with

o B

My = <alZ,q,(0)lg> and Kwys E, - E,. ‘ o
The matrix element M,, cécnrs simply as a time independent coe{f{clérxi in the trans -~

- ition amplitude

.

<aflUlt, ) 1gi> = -}? ,(t ot My, o KHE(5t) >y - E {4.8)
. (-} . . . + -

We can now replace E(r, t'}) in this expression by the sum of the twoe operators
E"Nr,t) and E()(r, 8).  The emission operator E(r, t} containg only negative
frequencies,i.e,, exponential time dependences of the form ™ for w >0, The
time Integrals of these terms.clearly osciliate rapidly with incrpaging t; They are
furthermore quite small in amplitude compared with the terms contzibuted by the
annihilation operator E”(r, t). What we are describing, In fact, is the way in which
the transitions are restricted by the conservailon af energy. In order to find that
the atomie transitions conserve the energy of the field quanta with ‘Al accuracy

AE = 4w, we muat leave our shutter open for a tength of time € t,>>1/Aw,

In practice we always have Aw -y Le, the shutter 18 open for a great many
periods of oscillation and then the contribution of the emigsion terp BFHr,t) 1s
entirely negiigible, . (We are agsuming that the detector is at a'relgtively low tem-
perature, as we have remarked in the preceding lecture,) o,

We must next sum the squared modulus of the amplitude (4. 6) over all final
states |12 of the figld, - since no observations are ordinarily made. gf those states,
One of the. virtues &t working with the expression (4. 8) for the amplitude Is that in

Summi _ all the ¢ of a.complate get, those
final states which.cannot be reached by the field for physical reasohs are prosent
in the sum but contribute nothing, either because the matrix elements leading to
them vanish identically, or because the time integrals ef the matrix elentents vanish,

"
P TN—— ]
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" Thus the conslralnt represented by the conservation of energy, {or example, is
actually implicit in the structurs of thé time intsgrala in the sum of the squared
‘amplitudes, : :

. {amn
B} <allu(st,) tgi >t

e 45, T =
- {ﬁ) 3 _ﬁ j: dtrdys g Waglrt-t) EyM’:g,yMu.r‘““EL)(r‘t‘)x
a ) i

' E‘j(r,{") [i>,
whish has been derived by using the relation
<HED 4D = <HE S

aad the campleteness relation Z,[{> <f§ = 1,

We have already discusged the nied Lo average such expression as Eq, {4.7)
ever an ensemble of Lnutlal states |12 since the initial state is rarely known aceur-
alely In practice. We then (ind for the transition probability the expression

pl-ﬂ “) = {E]<MiU{t, t") lgbi'}“ o |

3 [t 4
z(l%) .2:;"[ T Ml Mg,

to 3

Tr {pE. r, ), 1, 7)) @

e * ! ¢ gt
= (ﬁ) u};ﬁ f*,f*adb dt® eiwq(l 1) M:mMu,v Gﬁ:u{ﬂ'; rt’} .
Tha definitions of the density operator g of the fsld and of the first order correla-
tion functlon G'" have-been given in the preceding lecture.

‘The foregoing discussion has assumed that the atom makes 2 trangitiontoa
specified final state |a>, Counters empioy ing discrete final states have received
a certain amount of discusaion recently, Bleembergen and Weber, for instance,
have proposed ualng a scheme Wustrated by Fig, 5.

b
Wp
Q
[£1) Wy
[*]
' Figure 5

When the atom 18 excited to the atate a by an incldent fleld of frequency w it is then
raigsed loahigher level bby a pumping {1 1d atfrequencywy. The emisslonof a photon
with the sum frequency w, = w + wp indicates the absorption of a photon from the
incident field,

. In:the celeclors used o dale, however, the final states fa > of the atoms form
ag extremely denge aet, or a continuum; the atoms are simply lonized, for instance.
Since a counter of photoelectrons has only a limited abillty to select among final
atomic stales (e, g. + .the counting .of photoelectrons places only weak restrictions on
thelr momenta), we have'to sum. the probability given by Eq. (4, 8) over at Teast part
of the contifuum of final'states a3+,  But not ull-ejected alectrons can really ba
counted.. ‘Often they are ejected in divections for which the countér 1§ ingeénsitive
or they are stopped Yy matter. The device:might furthermore be'bullt so as to infro-
duce some explicit selection according to energies before detecting photoelectrons,

any detall here, Instead v sha
-iron ejected by, photoabsg igre :
~The way in which this function varies with the final state {a > of the-electron-ion

‘Feactied by putting narrow band 1

‘basic thas parrow band ones.
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" We shall ‘not discuss the actual means ised for detecting the pl-i‘qt.oe]’éclmns_ tn
: ad we al sume slmply, that the probability that an elec-
really Teglatered ls given by some function Ria),

system willdepend, ingeneral, on the geometrical and physical propafties.of the

.actual counting device. If we now sum the probabilities given by Eq. (4. 8) over
“the final states |a > using the probability R(a) as a welght, we {ind far the prob-

N 4

ability of deteciing a photon abgsorption in our one-atom detector R

_.p(:;(t)‘_.=§:1.n(a} By (8 . -
¢ .
Aot D S [ aear TR My, M (49)
[T TR Y [ £ ) 1., N
x ettt g0 ), AN

We now separate the sum over ihe f{inal states inio two parts, ifsz;::i over the
final electron energles and one over all other variables such as momeatum direc-
tions, spln, etc. We do this by Introducing the sensitivity function,. o

B, (m) ‘= 231(%)3 23 R(:a}Mll.rM::.u &{w - w“} ,

which containg contributions only from trangitions with a flxed enebgytransier, fw,
(Note that 8,,{w) although it is written as 2 -sum of delta {unctions, {sactuallya
well-behaved function for the case we are considering since the sutn pver stales |a>
ig really an integrationover states witha contlnoum of energles.) -, - *

By making use of the sensitivity function and of the properties of the deltz-
function it containg we may write the counting probability in Eg. (4.8} In the form

t S - R
iy = ’2‘1'5 ‘(fw {:n" £c§m§v 8, {w)e i) G,,“_’m‘,y‘_tn), {4.11)

Bince 8,,{w} = O for w<0 we have extended the integral over lhe_‘vanlah'le w from

[

- (4. to)

= to+«. Hwe define the Fourier transform of the sensitivity function by

o "
8,0t ={1/2z) !ﬂ 8, (w)e"“ dw, g {4.12)
we finally obiain e '
1 t in R
p'Y = J;at_-ft At LS, (80 -t} Gy, (st N (R )
’ o te

Eq. (4. 13) represents the total transition probability when our shujter Is open
Irom time t, to t. To obtain the rate at which transitions cccur we must differen-
tiate with respect to t. e . _ LI

In general there Is nothing very localizable in time about the dbeorption process.
It is not possible to say that the photon hag been abisorbed in a particular interval
of time small compared to the total perlod during which the shuiter has been open,
This becomes quite clear if we agsume that the gensitivity s, (w) is gharply peaked
with W small width Aw, Then S,.(€¢' ~ ') takes on nonvanishing valpes for [t -4}
= 1/Aw, whichmaybe an arbitrarily long interval of time for small Aw.. The

‘degree of non-locality in time which enters the Integral in Eq. (4. 19) 18, roughly

Bpeaking, justthe reciprocal 1/ of the bandwidth of our device, If the bandwidth

18 narrow the ¢ounter measures an average of values of Gm(rt', it} with ¢ guite

ditferent from. ¢, . In.optical e

periments a narrow band sensitivity 18 usually

_ ht filters in front of broad band counters, 1. e.,

oy **filtering't the correlation function G '™ rather than by diseriminating between
phatoelectrona.  Broad band counters are theréfore; in this senge,, sontewhat more
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In the limiting case of extremely broaﬂband d.etectmn the dete;tigﬁn process
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.baconies a-ppmximatei_y local in time. We have already made some mention in the
preeediztg‘lacmre_m a5 ideal photedetector. Such g detector, we ghall agsume, ham
& sensitivity function 8, (w) which is constant for all freguenciea, To Bain & quick

Insight indo the meaning of this assumption we note that when the sensitivity funetion
isa constant,s,, tndependant of frequency, Eq. (4. 12} reduces to o

S, (th = 5, 6(1). : (4.19)

The photon absorption process then becomes, In effect, localized in time, and the
transition probability given by Eq. (4. 13} reduces to :

Pl = %, f 6t rey ap, {4.15
. H)

Now the assumption that 8, (w) L; independent of Irequency would be quite a
dilitcult one to meet in practice for w > ¢, When we take negative values of w into
account it becomes, stricily speaking, an Impossible condition to meet gince
afu) = tiorw < 0, Butin tact neither of these troubies stands In the way of

how much the seusitivity varies outside the excited band,
To show that we need only be concerned Lo have the sensgitivity remain constant
over {he band which is actually excited, we ghall examine Eqn. (4. 11} for the trans-
: Hion probability bs a Little mare detall, Letus bagin by imagining that the time
intervai t - t, is exceedingly great, e.g., we let t— = gqng by ==, Then if we
let K, {w) be the Fourier integral : '

K {w = !:;ﬂ' !‘:dgu @ wiriagy (%,“}('ﬂ'.-w'}; ' {4.186)

it is cl!ear that X, vanishes for frequencies w lying outside lhe.exclzed band. {e.g,,
The diagonal elements K, {w) are simply proportional to the power spectra of the
three fleld components, ) We may then make uge of K, (w) to rewrite Eq. (4.11)as

UMY =(1/2q) f: I8, (@)K, () du (4.17)

Now as long as 8, {w) takes on the conslant value 8, over the excited band
{and no matter how it behaves_elsewhere) we may write Eq. {4,17) ag

P“](t)

3

E 8,,(1/21) f: K, {w) de
) (4.18)

AT
Z w64 0w, ey gy

and the latter of thege expressions agaln shows the locality in time of the photon
absorption process which we noted earlier in Eq, {4.15), 1 e., the two arguments
of the correlation function in the integrand are the same,

In order to derive the foregoing result we Imagined that the time interval ¢ “t,
was allowed to become Infinite, To see the Influence of the faet thal the time
intervat has a finite length, let ug define a time-dependent step funztion

: 0fort <t,
n{t} = l Fior o<t <t

0 for t# >t
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Then the Ymits of the time integrations in Eq. (4.1 1}, for exampla, may be
extended from -« tow i we first multiply the correlation function in the Integrand
by #(t'} 4{t'). This extension of the limits of the time integrations means that
We May use once more an argument of the type which led {o Eq. {4. 2&{ + _But the
difference Is. that the function K, (@) must now be regarded as the Fourier trans-
form . o

K (v) = .j:_dt* f_;sit" ehdt'tl peny G,L”(rt-_', ) g (1) N " {4.19)

The bandwidth of this function will in general be different {from that of the radiation
present but the diffarence will only he slgnificant i the period during which the

shutter is open is extremely brief, . . oy

- L.et us suppose the bandwidth of the radiation present, i.e., of -the funttion

G'Y), is 6w.. The bandwidth associated with the functions 1 is of ordef (1 51,)"*

C {w} is presumably of the magnitude of

.

A > & and Aw > {t -t )" | wes
! ¢
The second of these conditions sets a lower bound 1/Aw to the fength'of Gime our
shutter can be open if we want the behavior of our counder o remain ideal
1f we differentlate Eq. (4, 15) with respect Lo tlme we find that the rate of in-

crease of the transition probability, Le,, the counting rate, is . AT
odpty S
wiiy « L L 8,G), (rt, 1) C e (4.20)

-Having earrled the tensor indices of the sensitivity and cnrreintim'ru};ctiens
far enough to illustrate their rolé in determining the transition probabilities we
ghall now eliminate them by imagining the field to possess a spetilied golarization
&« “T'his can be accomplished in practice, of course, by putting a polarization
filter in front of the counter.. With the notation +

e

EMr 0 = & . B e,

ECr, 0 = &+ E(r, 0 CE
6ot oy = e {p EYr, 0 BV (r, 1)) S un
8=F &5, ¢, -

Equation {4.20) may be rewritten as "
wi) = 56" (rt, 1), L (e

0

We have thug justified the assumption, made in the course of the simplified dis-
cussiong given earller, that an jdeal photon counter ean be constructdd to respond,
In effect, to'the fleld at 2 given Instant of time. Its counting rate is proportional
to the first order correlation function evaluated-at a single poist and 4 gingle time,
" In dertving the foregoing results we have employed the electric digole approx-
tmation. " The use of that approximation has bieen much niore a malter.of ponven-
ienca than one of necessity,  We could as well have retained the geneyal coupling
betwéen the momentum o1 the atomic electrons and the vector potential.- We would
then have made use of correlation fuictions for the vector potential rather than for
the electric-fleld. The only difference In the caleulations would then be a maiter of




